
UNIT-II

❖ Anatomy of an Android

To implement android apps, Android Studio is the official IDE (Integrated Development

Environment) which is freely provided by Google for android app development.

Once we setup android development environment using android studio and if we create

a sample application using android studio, our project folder structure will be like as

shown below. In case if you are not aware of creating an application using an android

studio please check this Android Hello World App.

 The Android project structure on the disk might be differs from the above

representation. To see the actual file structure of the project, select Project from the

Project dropdown instead of Android.

The android app project will contain different types of app modules, source code files,

and resource files. We will explore all the folders and files in the android app.

1. Manifests Folder

This folder will contain a manifest file (AndroidManifest.xml) for our android application.

This manifest file will contain information about our application such as android version,

access permissions, metadata, etc. of our application and its components. The manifest

file will act as an intermediate between android OS and our application.Following is the

structure of the manifests folder in the android application.

2. Java Folder

This folder will contain all the java source code (.java) files which we’ll create during the

application development, including JUnit test code. Whenever we create any new

project/application, by default the class file MainActivity.java will create automatically

under the package name “com.tutlane.helloworld” like as shown below.

3. res (Resources) Folder

It’s an important folder that will contain all non-code resources, such as bitmap images,

UI strings, XML layouts like as shown below.

Alt

Text

The res (Resources) will contain a different type of folders that are

3.1. Drawable Folder (res/drawable)

It will contain the different types of images as per the requirement of application. It’s a

best practice to add all the images in a drawable folder other than app/launcher icons

for the application development.

3.2. Layout Folder (res/layout)

This folder will contain all XML layout files which we used to define the user interface of

our application. Following is the structure of the layout folder in the android application.

3.3. Mipmap Folder (res/mipmap)

This folder will contain app / launcher icons that are used to show on the home screen.

It will contain different density type of icons such as hdpi, mdpi, xhdpi, xxhdpi, xxxhdpi,

to use different icons based on the size of the device.

Following is the structure of the mipmap folder in the android

application.

3.4. Values Folder (res/values)

This folder will contain various XML files, such as strings, colors, style definitions and a

static array of strings or integers. Following is the structure of the values folder in

android application.

4. Gradle Scripts

In android, Gradle means automated build system and by using this we can define a

build configuration that applies to all modules in our application. In Gradle build.gradle

(Project), and build.gradle (Module) files are useful to build configurations that apply to

all our app modules or specific to one app module.Following is the structure of Gradle

Scripts in the android application.

Alt

Text

Following are the important files which we need to implement an app in android studio.

5. Android Layout File (activity_main.xml)

The UI of our application will be designed in this file and it will contain Design and Text

modes. It will exists in the layouts folder and the structure of activity_main.xml file in

Design mode like as shown below.

We can make required design modifications in activity_main.xml file either using Design

or Text modes. If we switch to Text mode activity_main.xml file will contain a code like

as shown below.

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.tutlane.helloworld.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 </android.support.constraint.ConstraintLayout>

6. Android Main Activity File (MainActivity.java)

The main activity file in the android application is MainActivity.java and it will exist in the

java folder. The MainActivity.java file will contain the java code to handle all the

activities related to our app.

Following is the default code of MainActivity.java file which is generated by our

HelloWorld application.

package com.tutlane.helloworld;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

7. Android Manifest File (AndroidManifest.xml)

Generally, our application will contain multiple activities and we need to define all those

activities in the AndroidManifest.xml file. In our manifest file, we need to mention the

main activity for our app using the MAIN action and LAUNCHER category attributes in

intent filters (). In case if we didn’t mention MAIN action or LAUNCHER category for the

main activity, our app icon will not appear in the home screen’s list of apps.

Following is the default code of AndroidManifest.xml file which is generated by our

HelloWorld application.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.tutlane.helloworld" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

These are the main folders and files required to implement an application in android

studio. If you want to see the actual file structure of the project, select Project from the

Project dropdown instead of Android.

❖ Terminologies Correlated to Android
XML file

The preeminent file is used for the structure of an android project. It has
complete information about all the components and packages. It initializes the
API that is further used by an application.

View

It is the component of the User Interface that occupies the rectangular area
on the screen.

Layout
It properly aligned the views on the screen.

Activity

Activity is a User interface screen through which the user interacts. Users
have a right to place the UI elements in any way according to the Users
choice.

Emulator
The emulator is the virtual device smartphone provided with an android
studio. You can run your created application on the emulator and test its UI
and function according to the needs.

Intent
It acts as a communicating object. You can establish a communication
between two or more than two components as services, broadcast receivers.
It is used to start and end the activity and services components.

Services
It is used to run the process even in the background. There is no defined UI
for service. Any component can start the service and end the services. You
can easily switch between the applications even if the services are running
the background.

Content Provider
It implemented in two ways:

You can use implement the existing content provider in your application.
However, you can also create a new content provider that will provide or share the
data with other applications.

❖ Android UI Controls (Textview, EditText, Radio Button, Checkbox)

In android UI or input controls are the interactive or View components that are used to

design the user interface of an application. In android we have a wide variety of UI or

input controls available, those

are TextView, EditText, Buttons, Checkbox, Progressbar, Spinners, etc.

Following is the pictorial representation of user interface (UI) or input controls in

android application.

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-progressbar-with-examples
https://www.tutlane.com/tutorial/android/android-spinner-dropdown-list-with-examples

Generally, in android the user interface of an app is made with a collection

of View and ViewGroup objects.

The View is a base class for all UI components in android and it is used to create

interactive UI components such as TextView, EditText, Checkbox, Radio Button, etc. and

it is responsible for event handling and drawing.

The ViewGroup is a subclass of View and it will act as a base class for layouts and

layout parameters. The ViewGroup will provide invisible containers to hold other Views

or ViewGroups and to define the layout properties.

To know more about View and ViewGroup in android applications, check this Android

View and ViewGroup.

In android, we can define a UI or input controls in two ways, those are

• Declare UI elements in XML

• Create UI elements at runtime

The android framework will allow us to use either or both of these methods to define

our application’s UI.

Declare UI Elements in XML

In android, we can create layouts same as web pages in HTML by using

default Views and ViewGroups in the XML file. The layout file must contain only one

root element, which must be a View or ViewGroup object. Once we define the root

element, then we can add additional layout objects or widgets as a child elements to

build View hierarchy that defines our layout.

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-radiobutton-with-examples
https://www.tutlane.com/tutorial/android/android-view-and-viewgroup-with-examples
https://www.tutlane.com/tutorial/android/android-view-and-viewgroup-with-examples

Following is the example of defining UI controls (TextView, EditText, Button) in the XML

file (activity_main.xml) using LinearLayout.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/fstTxt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Enter Name" />
 <EditText
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"/>
 <Button
 android:id="@+id/getName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Get Name" />
</LinearLayout>

In android, each input control is having a specific set of events and these events will be

raised when the user performs particular action like, entering the text or touches the

button.

Load XML Layout File from an Activity

Once we are done with the creation of layout with UI controls, we need to load the XML

layout resource from our activity onCreate() callback method like as shown below.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
}

If you observe above code we are calling our layout using setContentView method in

the form of R.layout.layout_file_name. Here our xml file name is activity_main.xml so

we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called

by android framework to get the required layout for an activity.

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

Create UI Element at Runtime

If we want to create UI elements at runtime, we need to create our own

custom View and ViewGroup objects programmatically with required layouts.

Following is the example of creating UI elements (TextView, EditText, Button)

in LinearLayout using custom View and ViewGroup objects in

an activity programmatically.

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView1 = new TextView(this);
 textView1.setText("Name:");
 EditText editText1 = new EditText(this);
 editText1.setText("Enter Name");
 Button button1 = new Button(this);
 button1.setText("Add Name");
 LinearLayout linearLayout = new LinearLayout(this);
 linearLayout.addView(textView1);
 linearLayout.addView(editText1);
 linearLayout.addView(button1);
 setContentView(linearLayout);
 }
}

By creating a custom View and ViewGroups programmatically, we can define UI

controls in layouts based on our requirements in android applications.

Width and Height

When we define a UI controls in a layout using an XML file, we need to set width and

height for every View and ViewGroup elements

using layout_width and layout_height attributes.

Following is the example of setting width and height for View and ViewGroup elements

in the XML layout file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/fstTxt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Enter Name" />
</LinearLayout>

If you observe above example, we used different values to set layout_width and

layout_height, those are

• match_parent

• wrap_content

If we set value match_parent, then the View or ViewGroup will try to match with

parent width or height.

If we set value wrap_content, then the View or ViewGroup will try to adjust its width or

height based on the content.

Android Different Types of UI Controls

We have a different type of UI controls available in android to implement the user

interface for our android applications.

Following are the commonly used UI or input controls in android applications.

• TextView

• EditText

• AutoCompleteTextView

• Button

• ImageButton

• ToggleButton

• CheckBox

• RadioButton

Android TextView

In android, TextView is a user interface control that is used to display the text to the

user.

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-autocompletetextview-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-imagebutton-with-examples
https://www.tutlane.com/tutorial/android/android-toggle-button-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-radiobutton-with-examples

Android EditText

In android, EditText is a user interface control which is used to allow the user to enter

or modify the text.

Android AutoCompleteTextView

In android, AutoCompleteTextView is an editable text view which is used to show the

list of suggestions based on the user typing text. The list of suggestions will be shown as

a dropdown menu from which the user can choose an item to replace the content of the

textbox.

Android Button

In android, Button is a user interface control that is used to perform an action when the

user clicks or tap on it.

Android Image Button

In android, Image Button is a user interface control that is used to display a button with

an image to perform an action when the user clicks or tap on it.

Generally, the Image button in android looks similar as regular Button and perform the

actions same as regular button but only difference is for image button we will add an

image instead of text.

Android Toggle Button

In android, Toggle Button is a user interface control that is used to display ON

(Checked) or OFF (Unchecked) states as a button with a light indicator.

Android CheckBox

In android, Checkbox is a two-states button that can be either checked or unchecked.

Android Radio Button

In android, Radio Button is a two-states button that can be either checked or

unchecked and it cannot be unchecked once it is checked.

❖ Application Context in Android

The Application Context is a context tied to the lifecycle of the application and is used

across the app's components to access application-level resources and services. It

remains available throughout the app's lifetime and is not tied to the lifecycle of a

specific activity or fragment.

I) Key Features of Application Context

1. Global Scope

The Application Context is not linked to a specific activity or view; it persists as

long as the application is running.

2. Resource Access

It provides access to resources like:

 Shared Preferences: Storing small key-value pairs persistently.

 File System: Accessing app-specific files in internal or external storage.

 Databases: Interacting with SQLite or Room databases.

3. System Services

Application Context enables access to Android system-level services, such as:

 ConnectivityManager: Checking or managing network connectivity.

 LocationManager: Accessing location-related functionality.

 AlarmManager: Setting alarms.

 NotificationManager: Managing notifications.

II) When to Use Application Context

1. Long-lived Objects:

Use Application Context when the context needs to outlive the activity or

fragment, such as:

 Background tasks.

 Application-wide singleton instances.

2. Avoiding Memory Leaks:

It helps prevent memory leaks since the Application Context is tied to the

application's lifecycle rather than the activity's.

3. Accessing Application Resources:

When working with components that need resources independent of a specific UI

component, such as:

 Custom adapters.

 Database helpers.

III) Example:

Accessing Shared Preferences

Here's how you can use SharedPreferences with the Application Context:

SharedPreferences sharedPreferences =

 getApplicationContext().getSharedPreferences("MyPrefs", Context.MODE_PRIVATE);

SharedPreferences.Editor editor = sharedPreferences.edit();

editor.putString("username", "Ram");

editor.putInt("age", 30);

editor.apply(); // or editor.commit();

• Mode:

 Context.MODE_PRIVATE: Only the app can access the file (default).

 Other modes like MODE_WORLD_READABLE and

MODE_WORLD_WRITEABLE are deprecated.

• apply() vs. commit():

 apply(): Asynchronous, does not return a result, faster for UI thread.

 commit(): Synchronous, returns a boolean indicating success or failure.

2. Retrieving Data

SharedPreferences sharedPreferences =

 getApplicationContext().getSharedPreferences("MyPrefs", Context.MODE_PRIVATE);

String username = sharedPreferences.getString("username", "DefaultName");

int age = sharedPreferences.getInt("age", 0);

System.out.println("Username: " + username);

System.out.println("Age: " + age);

• The second parameter in getString() or getInt() is the default value returned if the

key is not found.

❖ Activities in Android

Activities are part of the basic component of the Android application. Users cannot

interact with an application on their mobile device without an activity. Activities form the

bedrock upon which our mobile application is built. It consists of the layout, text fields,

images, and different UI elements which the user can interact with.

Every mobile application you open, the first screen you see is an activity. In Android

Studio activities are created using the Java or Kotlin programming language.

Activities are linked through intents, that are used for communication and navigation

between different activities. Intents can be used to start a new activity, pass data

between activities, or even trigger actions in other components of the app.

This article will provide a detailed explanation of activities, their importance, and activity

life cycle along with its methods.

 An activity

Activity is more like a container for one or more multiple screens in your app. It's not

just seen as a screen but also as a unit that users interact with in your application.

Activities contain information about whether a user is currently interacting with the

screen or if the activity is in the background.

It also serves as an entry point for your app. We can have multiple screens in an

application that are bundled together into an activity.

For example, A user profile page activity can contain other screens like information

details of the user.

However, Jetpack Compose has made everything easier. Using the jetpack compose UI

we can have only one main activity with multiple screens while staying in the single main

activity.

The main activity in Jetpack Compose serves as the entry point of our application. The

main characteristic of activities in Android is the LIFECYCLE which means at some point

our activity is created, destroyed, paused, etc.

Basic components of an activity

1. Layout XML: the layout XML file represents the user interface of an activity. These files

contain view-groups (linear layout, constraint layout) and views such as buttons, images,

app bars, etc.

The XML file defines the structure and positioning of these components which the user

will interact with like clicking a button to open a new activity.

However, in Jetpack Compose you can define and structure the features of your app

inside the main.activity.kt file.

2. Activity class: An activity class comprising a single screen with a user interface is

represented by an instance(object) of the Activity class in Android.

To create a custom activity you must create a subclass of the Activity class and override

its lifecycle methods and other crucial methods to the application's needs.

3. Life cycle methods: these methods perform various behaviors in activity and can be

overridden in different stages. The methods

are:`onCreate()`, onStart(), onResume(), onPause(), onStop(), onDestroy(), etc.

❖ Services

A Service is an application component that can perform long-running operations in the

background. It does not provide a user interface. Once started, a service might continue

running for some time, even after the user switches to another application. Additionally,

a component can bind to a service to interact with it and even perform interprocess

communication (IPC). For example, a service can handle network transactions, play

music, perform file I/O, or interact with a content provider, all from the background.

Types of Services

These are the three different types of services:

Foreground

A foreground service performs some operation that is noticeable to the user. For

example, an audio app would use a foreground service to play an audio track.

Foreground services must display a Notification. Foreground services continue

running even when the user isn't interacting with the app.

When you use a foreground service, you must display a notification so that users

are actively aware that the service is running. This notification cannot be

dismissed unless the service is either stopped or removed from the foreground.

Background

A background service performs an operation that isn't directly noticed by the

user. For example, if an app used a service to compact its storage, that would

usually be a background service.

Bound

A service is bound when an application component binds to it by

calling bindService(). A bound service offers a client-server interface that allows

components to interact with the service, send requests, receive results, and even

do so across processes with interprocess communication (IPC). A bound service

runs only as long as another application component is bound to it. Multiple

components can bind to the service at once, but when all of them unbind, the

service is destroyed.

❖ Intents in Android

https://developer.android.com/reference/android/app/Service
https://developer.android.com/guide/components/fundamentals#Components
https://developer.android.com/develop/ui/views/notifications
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)

Intents are messaging objects used to communicate between app components, such as

Activities, Services, or Broadcast Receivers. They enable actions like launching activities,

starting services, or delivering broadcasts.

Types of Intents

1. Explicit Intent

• Definition: Specifies the target component (e.g., an Activity or Service) by name.

• Use Cases:

o Navigating between activities within the same app.

o Starting a service.

• Key Features:

o Target is explicitly defined using the component name or class.

o Ideal for intra-app communication.

• Example: Navigating to another activity.

Intent intent = new Intent(this, SecondActivity.class);

startActivity(intent);

• Example: Starting a service.

Intent intent = new Intent(this, MyService.class);

startService(intent);

2. Implicit Intent

• Definition: Describes a general action to be performed, allowing the Android

system to determine which component (app or service) can handle it.

• Use Cases:

o Sharing data.

o Opening a web page or sending an email.

o Choosing apps to handle user actions (e.g., opening a file).

• Key Features:

o Does not explicitly name the target component.

o Relies on intent filters in the manifest to match actions and categories.

• Example: Opening a web page.

Intent intent = new Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse("https://www.example.com"));

startActivity(intent);

• Example: Sharing data.

Intent intent = new Intent(Intent.ACTION_SEND);

intent.setType("text/plain");

intent.putExtra(Intent.EXTRA_TEXT, "Hello, world!");

startActivity(Intent.createChooser(intent, "Share via"));

Components of an Intent

1. Action: The operation to be performed (e.g., ACTION_VIEW, ACTION_SEND).

2. Data: The data to be acted upon, often specified as a URI.

3. Category: Provides additional information about the action (e.g.,

CATEGORY_DEFAULT).

4. Extras: Key-value pairs for passing additional data.

5. Flags: Instructions on how to launch the activity (e.g.,

FLAG_ACTIVITY_NEW_TASK).

Passing Data with Intents

You can use the putExtra() method to pass data and retrieve it in the target component

using getExtras().

• Sending Data:

Intent intent = new Intent(this, SecondActivity.class);

intent.putExtra("KEY_NAME", "Ram");

intent.putExtra("KEY_AGE", 25);

startActivity(intent);

• Receiving Data:

Intent intent = getIntent();

String name = intent.getStringExtra("KEY_NAME");

int age = intent.getIntExtra("KEY_AGE", 0);

Intent Filters

For an Implicit Intent to be handled, the target component must define an intent filter in

its manifest file.

• Example:

<activity android:name=".SecondActivity">

 <intent-filter>

 <action android:name="android.intent.action.VIEW"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:scheme="https" android:host="www.example.com"/>

</intent-filter>

 </activity>

❖ Passing Data Between Activities using Extras
We can pass data between different activities when their started and when they end.

We start activities by creating intents. We can "put extra" information in an intent that

starts a new activity.

Gmail has at least two Activities. Let's imagine there is a ViewInbox activity and

a ReadEmail activity. When someone clicks on an email in the inbox

the ViewInbox activity, the activity needs to create a new intent to start

a ReadEmail activity. Simply starting the ReadEmail activity isn't enough.

The ReadEmail activity needs to know what email it's supposed to display.

The ViewInbox activity puts extra information in the intent that specifies which email

should be displayed.

Here's some simple examples of how to put extra information in an intent, and how to

get it out.

When creating new intents, you can also give it extra data. Here's an example:

 Intent intent = new Intent(EmailListActivity.this, ReadEmailActivity.class);
 intent.putExtra("ID", 123);
 intent.putExtra("SENDER", "RAM");

The Intent class has a handful of helper methods you can call to get and store extra

data. The main one is putExtra(), which takes two parameters: a String that gives the

data a name, and the data itself.

With Intent.putExtra(), you can put data inside the intent (including Strings, numbers,

booleans, certain objects).

Once you start a new activity, you can retrieve the Intent and get the sent data, as

follows:

 // get the intent that started this activity
 Intent intent = getIntent();

 // get the data from the intent
 int id = intent.getIntExtra("ID", 0);
 String sender = intent.getStringExtra("SENDER");

Again, the Intent class has a handful of getters for extra data, usually formatted

like get_Extra. Examples, getIntExtra(), getStringExtra(), getBooleanExtra(), etc.

❖ Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other applications or from

the system itself. These messages are sometime called events or intents. For example,

applications can also initiate broadcasts to let other applications know that some data has

been downloaded to the device and is available for them to use, so this is broadcast receiver

who will intercept this communication and will initiate appropriate action.

There are following two important steps to make BroadcastReceiver works for the system

broadcasted intents −

• Creating the Broadcast Receiver.

• Registering Broadcast Receiver

There is one additional steps in case you are going to implement your custom intents then

you will have to create and broadcast those intents.

Creating the Broadcast Receiver

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and overriding

the onReceive() method where each message is received as a Intent object parameter.

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Toast.makeText(context, "Intent Detected.", Toast.LENGTH_LONG).show();

 }

}

Registering Broadcast Receiver

An application listens for specific broadcast intents by registering a broadcast receiver

in AndroidManifest.xml file. Consider we are going to register MyReceiver for system

generated event ACTION_BOOT_COMPLETED which is fired by the system once the Android

system has completed the boot process.

Broadcast-Receiver

<application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <receiver android:name="MyReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED">

 </action>

 </intent-filter>

 </receiver>

</application>

Now whenever your Android device gets booted, it will be intercepted by

BroadcastReceiver MyReceiver and implemented logic inside onReceive() will be executed.

There are several system generated events defined as final static fields in the Intent class.

The following table lists a few important system events.

Sr.No Event Constant & Description

1 android.intent.action.BATTERY_CHANGED

Sticky broadcast containing the charging state, level, and other information about the

battery.

2 android.intent.action.BATTERY_LOW

Indicates low battery condition on the device.

3 android.intent.action.BATTERY_OKAY

Indicates the battery is now okay after being low.

4 android.intent.action.BOOT_COMPLETED

This is broadcast once, after the system has finished booting.

5 android.intent.action.BUG_REPORT

Show activity for reporting a bug.

6 android.intent.action.CALL

Perform a call to someone specified by the data.

7 android.intent.action.CALL_BUTTON

The user pressed the "call" button to go to the dialer or other appropriate UI for

placing a call.

8 android.intent.action.DATE_CHANGED

The date has changed.

9 android.intent.action.REBOOT

Have the device reboot.

❖ The Android Manifest File
The Android Manifest File (AndroidManifest.xml) is an essential configuration file in every

Android application. It provides information about the app's structure and requirements

to the Android operating system. Here's an overview of its purpose and common

settings:

Purpose of the Android Manifest File

1. Declare Application Components:

 Registers app components such as activities, services, broadcast receivers,

and content providers.

 Ensures the Android system is aware of the components and their

configurations.

2. Request Permissions:

 Specifies permissions the app needs to access system features (e.g.,

camera, location, internet).

3. Define Hardware and Software Features:

 Declares the hardware or software features required for the app (e.g.,

camera, GPS).

4. Set Application Metadata:

 Provides metadata like app name, version, icons, and themes.

5. Filter Device Compatibility:

 Restricts app installation on incompatible devices based on hardware,

features, or API levels.

6. Control App Behavior:

 Specifies application-level configurations such as launch mode, process

behavior, and backup options.

Example AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp">

 <!-- Versioning Information -->

 <uses-sdk

 android:minSdkVersion="21"

 android:targetSdkVersion="33" />

 <!-- Permissions -->

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission android:name="android.permission.CAMERA" />

 <!-- Hardware Features -->

 <uses-feature android:name="android.hardware.camera" android:required="true" />

 <!-- Application Block -->

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme">

 <!-- Main Activity -->

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <!-- Secondary Activity -->

 <activity

 android:name=".SecondActivity"

 android:label="@string/second_activity"

 android:exported="true">

 <intent-filter>

 <action android:name="com.example.myapp.ACTION_VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

 <!-- Service -->

 <service

 android:name=".MyBackgroundService"

 android:enabled="true"

 android:exported="false" />

 <!-- Broadcast Receiver -->

 <receiver

 android:name=".MyBroadcastReceiver"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED" />

 </intent-filter>

 </receiver>

 <!-- Content Provider -->

 <provider

 android:name=".MyContentProvider"

 android:authorities="com.example.myapp.provider"

 android:exported="false" />

 <!-- Metadata -->

 <meta-data

 android:name="com.google.android.maps.v2.API_KEY"

 android:value="your_api_key" />

 </application>

</manifest>

Explanation of the Program

1. <manifest>:

 The root tag includes the app's package name and XML namespace

declaration.

2. Versioning:

 <uses-sdk> defines the minimum and target SDK levels.

3. Permissions:

 <uses-permission> declares permissions like internet access, location, and

camera.

4. Hardware Features:

 <uses-feature> ensures that the app requires a camera and will not run on

devices without one.

5. Application Settings:

 <application> defines global app settings, including backup, theme, and the

app's icon.

6. Activity:

 <activity> registers MainActivity as the launcher activity with an intent filter

for MAIN and LAUNCHER.

 SecondActivity demonstrates handling a custom action.

7. Service:

 <service> registers a background service (MyBackgroundService).

8. Broadcast Receiver:

 <receiver> registers MyBroadcastReceiver to handle system events like

BOOT_COMPLETED.

9. Content Provider:

 <provider> declares a custom content provider (MyContentProvider) with a

unique authority.

10. Metadata:

 <meta-data> is used to store custom data like API keys for Google Maps.

❖ Android Emulator

The Android Emulator simulates Android devices on your computer so that you can test

your application on a variety of devices and Android API levels without needing to have

each physical device. The emulator offers these advantages:

• Flexibility: In addition to being able to simulate a variety of devices and Android

API levels, the emulator comes with predefined configurations for various

Android phone, tablet, Wear OS, Android Automotive OS, and Android TV

devices.

• High fidelity: The emulator provides almost all the capabilities of a real Android

device. You can simulate incoming phone calls and text messages, specify the

location of the device, simulate different network speeds, simulate rotation and

other hardware sensors, access the Google Play Store, and much more.

• Speed: Testing your app on the emulator is in some ways faster and easier than

doing so on a physical device. For example, you can transfer data faster to the

emulator than to a device connected over USB.

In most cases, the emulator is the best option for your testing needs. This page covers

the core emulator functionalities and how to get started with it.

Alternatively, you can deploy your app to a physical device. For more information,

see Run apps on a hardware device.

Get started with the emulator

The Android Emulator lets you test your app on many different devices virtually. The

emulator comes with Android Studio, so you don't need to install it separately. To use

the emulator, follow these basic steps, which are described in more detail in the sections

that follow:

1. Verify that you have the system requirements.

2. Create an Android Virtual Device (AVD).

3. Run your app on the emulator.

4. Navigate the emulator.

This page covers the steps to set up and explore your virtual testing environment in

more detail. If you already have your app running on the emulator and are ready to use

more advanced features, see Advanced emulator usage.

If you're experiencing issues with the emulator, see Troubleshoot known issues with

Android Emulator. Depending on your needs and resources, it might be worth delving

into system requirements and technical configurations, or it might be better to use a

physical device.

Emulator system requirements

For the best experience, you should use the emulator in Android Studio on a computer

with at least the following specs:

• 16 GB RAM

• 64-bit Windows 10 or higher, MacOS 12 or higher, Linux, or ChromeOS operating

system

• 16 GB disk space

https://developer.android.com/studio/run/device
https://developer.android.com/studio/run/emulator#requirements
https://developer.android.com/studio/run/emulator#avd
https://developer.android.com/studio/run/emulator#runningapp
https://developer.android.com/studio/run/emulator#navigate
https://developer.android.com/studio/run/advanced-emulator-usage
https://developer.android.com/studio/run/emulator-troubleshooting
https://developer.android.com/studio/run/emulator-troubleshooting

❖ Create an Android Virtual Device

Each instance of the Android Emulator uses an Android virtual device (AVD) to specify

the Android version and hardware characteristics of the simulated device. To create an

AVD, see Create and manage virtual devices.

Each AVD functions as an independent device with its own private storage for user data,

SD card, and so on. By default, the emulator stores the user data, SD card data, and

cache in a directory specific to that AVD. When you launch the emulator, it loads the

user data and SD card data from the AVD directory.

Run your app on the emulator

After you have created an AVD, you can start the Android Emulator and run an app in

your project:

1. In the toolbar, select the AVD that you want to run your app on from the target

device menu.

The target device menu.

2. Click Run. The emulator might take a minute or so to launch for the first time, but

subsequent launches use a snapshot and should launch faster. If you experience

issues, see the troubleshooting guide.

https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/advanced-emulator-usage#snapshots
https://developer.android.com/studio/run/emulator-troubleshooting

Once your app is installed on your AVD, you can run it from the device as you would run

any app on a device. Any time you want to deploy new changes, you need to

click Run or Apply Changes again.

Wear OS pairing assistant

If you want to test your app with Wear OS devices, the Wear OS pairing assistant guides

you step-by-step through pairing Wear OS emulators with physical or virtual phones

directly in Android Studio. To learn more, see Use the Wear OS emulator pairing

assistant.

Navigate the emulator

While the emulator is running, you can use your computer mouse pointer to mimic your

finger on the touch screen and use the emulator panel to perform common actions.

Navigate the emulator screen

Use your computer mouse pointer to mimic your finger on the touchscreen, select menu

items and input fields, and click buttons and controls. Use your computer keyboard to

type characters and enter emulator shortcuts.

https://developer.android.com/training/wearables/get-started/creating#pairing-assistant
https://developer.android.com/training/wearables/get-started/creating#pairing-assistant

